您的位置: 首页 > 新闻资讯 > 认证新闻 >  

EMC工程师必备:细说共模干扰和差模干扰

一、共模信号和差模信号


通常电源线有三根线,火线L,零线N和地线PE。


电压和电流的变化通过导线传输时有两种形态, 一种是两根导线分别做为往返线路传输, 我们称之为"差模";另一种是两根导线做去路,地线做返回传输, 我们称之为"共模"。


cf711568e1f60f4296e97b12f1549e4b.png

如上图, 蓝色信号是在两根导线内部作往返传输的,我们称之为"差模";黄色信号是在信号与地线之间传输的,我们称之为"共模"。


二、共模干扰与差模干扰

任何两根电源线上所存在的干扰,均可用共模干扰和差模干扰来表示。


共模干扰在导线与地(机壳)之间传输,属于非对称性干扰,它定义为任何载流导体与参考地之间的不希望有的电位差;


差模干扰在两导线之间传输,属于对称性干扰,它定义为任何两个载流导体之间的不希望有的电位差。


在一般情况下,共模干扰幅度大、频率高,还可以通过导线产生辐射,所造成的干扰较大。差模干扰幅度小、频率低、所造成的干扰较小。


2.1共模干扰信号

      

共模干扰的电流大小不一定相等,但是方向(相位)相同的。电气设备对外的干扰多以共模干扰为主,外来的干扰也多以共模干扰为主,共模干扰本身一般不会对设备产生危害,但是如果共模干扰转变为差模干扰,干扰就严重了,因为有用信号都是差模信号。

f152696a2e0032d4d6d4cf94634d9494.png


2.2差模干扰信号


差模干扰的电流大小相等,方向(相位)相反。由于走线的分布电容、电感、信号走线阻抗不连续,以及信号回流路径流过了意料之外的通路等,差模电流会转换成共模电流。

91beafa1ae9e41ab9da67b0559eaaa67.png


2.3共模干扰产生原因


1. 电网串入共模干扰电压。


2. 辐射干扰(如雷电,设备电弧,附近电台,大功率辐射源)在信号线上感应出共模干扰,原因是交变的磁场产生交变的电流,地线-零线回路面积与地线-火线回路面积不相同,两个回路阻抗不同等原因造成电流大小不同。


3.接地电压不一样,简单的说就电位差而造就了共模干扰。


4.设备内部的线路对电源线造成的共模干扰。


2.4共模干扰电流


共模干扰一般是以共模干扰电流存在的形式出现的,一般情况下共模干扰电流产生的原因有三个方面:


1. 外界电磁场在电路走线中的所有导线上感应出来电压(这个电压相对于大地是等幅和同相的),由这个电压产生的电流。


 2. 由于电路走线两端的器件所接的地电位不同,在这个地电位差的驱动下产生的电流。


 3. 器件上的电路走线与大地之间有电位差,这样电路走线上会产生共模干扰电流。


2.5注意事项


1.器件如果在其电路走线上产生共模干扰电流,则电路走线会产生强烈的电磁辐射,对电子、电气产品元器件产生电磁干扰,影响产品的性能指标;


2.当电路不平衡时,共模干扰电流会转变为差模干扰电流,差模干扰电流对电路直接产生干扰影响。对于电子、电气产品电路中的信号线及其回路而言:差模干扰电流流过电路中的导线环路时,将引起差模干扰辐射,这种环路相当于小环天线,能向空间辐射磁场,或接收磁场。


3. 共模干扰主要集中在1MHz以上。这是由于共模干扰是通过空间感应到电缆上的,这种感应只有在较高频率时才容易发生。但有一种例外,当电缆从很强的磁场辐射源(例如,开关电源)旁边通过时,也会感应到频率较低的共模干扰。


三、如何抑制共模干扰

共模干扰作为EMC干扰中最为常见且危害较大的干扰,我们抑制它最直接的方法就是滤波。

642b219fc278018d3212204f3683063c.png

在电路中串入共模电感,当有共模干扰电流流经线圈时,由于共模干扰电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模干扰电流,达到滤波的目的;


当电路中的正常差模电流流经共模电感时,电流在同相绕制的共模电感线圈中产生反向的磁场而相互抵消,因而对正常的差模电流基本没有衰减作用。


案例:USB 信号上的共模干扰抑制方法

7da86ae3cd53dc58252682f1c7ceea6b.png

USB 端口的滤波处理-使用共模电感


USB 传输线上的信号是差分信号而干扰源是共模干扰信号,在传输线上串上共模电感能较好的抑制共模干扰,而对有用的差分信号没有任何衰减。

31e929fe21cc0eb9f59cddc42424eb84.png

USB 高速运行会在DM/DP信号线上产生很强的共模干扰


ed0569b8a21117b1803f3089e644b107.png

电路中加入滤波器-共模电感后共模干扰信号得到有效抑制


如果共模干扰源是在电源回路,可使用共模电容来抑制干扰信号。

8b9256a7b6c4b8c8bc502182c6da44bf.png

在电路中引入共模电容,则共模电容提供最短的路径使共模干扰信号被旁路,从而抑制共模干扰的产生。


如果电源回路同时还存在差模干扰,使用差模电容来抑制干扰。

51fdd1c808ad797fc457e6919633b7c3.png

在电路中引入差模电容,则差模电容提供最短的路径使差模干扰信号被旁路,从而抑制差模干扰的产生。


共模干扰作为EMC干扰中最为常见且危害很大的干扰,抑制它的方法除了滤波外,还可以通过对信号线路进行屏蔽,在PCB 板上大面积铺地降低地线阻抗来减少共模信号强度等方法。


24ce99d805fb9634e8644d238ae609b3.png

EMC整改小技巧:

差模干扰与共模干扰

差模干扰:存在于L-N线之间,电流从L进入,流过整流二极管正极,再流经负载,通过热地,到整流二极管,再回到N,在这条通路上,有高速开关的大功率器件,有反向恢复时间极短的二极管,这些器件产生的高频干扰,都会从整条回路流过,从而被接收机检测到,导致传导超标。
共模干扰:共模干扰是因为大地与设备电缆之间存在寄生电容,高频干扰噪声会通过该寄生电容,在大地与电缆之间产生共模电流,从而导致共模干扰。
下图为差模干扰引起的传导FALL数据,该测试数据前端超标,为差模干扰引起:
3458b1be15ea1e11aee89d2e7350eea5.png


下图为开关电源EMI原理部分:
480292a273bbd5905aaeede90cfa3409.png
图中CX2001为安规薄膜电容(当电容被击穿或损坏时,表现为开路)其跨在L线与N线之间,当L-N之间的电流,流经负载时,会将高频杂波带到回路当中。此时X电容的作用就是在负载与X电容之间形成一条回路,使的高频分流,在该回路中消耗掉,而不会进入市电,即通过电容的短路交流电让干扰有回路不串到外部。
对差模干扰的整改对策:
1. 增大X电容容值
2. 增大共模电感感量,利用其漏感,抑制差模噪声(因为共模电感几种绕线方式,双线并绕或双线分开绕制,不管哪种绕法,由于绕制不紧密,线长等的差异,肯定会出现漏磁现象,即一边线圈产生的磁力线不能完全通过另一线圈,这使得L-N线之间有感应电动势,相当于在L-N之间串联了一个电感)
 
下图为共模干扰测试FALL数据:
222e29548bbf7deefc4865907291eb38.png
电源线缆与大地之间的寄生电容,使得共模干扰有了回路,干扰噪声通过该电容,流向大地,在LISN-线缆-寄生电容-地之间形成共模干扰电流,从而被接收机检测到,导致传导超标(这也可以解释为什么有的主板传导测试时,不接地通过,一夹地线就超标。USB模式下不接地时,电流回路只能通过L-二极管-负载-热地-二极管-N,共模电流不能回到LISNLISN检测到的噪声较小,而当主板的冷地与大地直接相连时,线缆与大地之间有了回路,此时若共模噪声未被前端LC滤波电路吸收的话,就会导致传导超标)
对共模干扰的整改对策:
1. 加大共模电感感量
2. 调整L-GNDN-GND上的LC滤波器,滤掉共模噪声
3. 主板尽可能接地,减小对地阻抗,从而减小线缆与大地的寄生电容。

EMC寄语随着时代的发展,越来越多的电子、电气设备或系统产品都需要进行检验检测,其中EMC测试是必备的检验检测指标之一。但EMC测试项目费用较贵,EMC实验室造价昂贵,绝大部分测量设备又需要采用进口设备,导致很少检验检测机构有能力建造EMC实验室。产品的EMC性能是设计阶段赋予的,一般电子产品设计时如果不考虑EMC因素,就会很容易导致EMC测试失败,以致不能通过相关EMC法规的测试或认证。例如,产品设计研发工程师们根据需求,设计出效果良好的滤波电路,置入产品I/O(输入/输出)接口的前级,可使因传导而进入系统的干扰噪声消除在电路系统的入口处;设计出隔离电路(如变压器隔离和光电隔离等)解决通过电源线、信号线和地线进入电路的传导干扰,同时阻止因公共阻抗、长线传输而引起的干扰;设计出能量吸收回路,从而减少电路、器件吸收的噪声能量;通过选择元器件和合理安排的电路系统,使干扰的影响减少。


EMC技能:整改小技巧

1150kHz-1MHz,以差模为主,1MHz-5MHz,差模和共模共同起作用,5MHz 以后基本上是共模。差模干扰的分容性藕合和感性藕合。一般1MHz以上的干扰是共模,低频段是差摸干扰。用一个电阻串个电容后再并到Y电容的引脚上,用示波器测电阻两引脚的电压可以估测共模干扰。

2、保险过后加差模电感或电阻。

3、小功率电源可采用PI型滤波器处理(建议靠近变压器的电解电容可选用较大些)

4、前端的π型EMI零件中差模电感只负责低频EMI,体积别选太大(DR8太大,能用电阻型式或DR6更好)否则幅射不好过,必要时可串磁珠,因为高频会直接飞到前端不会跟着线走。5、传导冷机时在0.15MHz-1MHz超标,热机时就有7dB余量。主要原因是初级BULk电容DF值过大造成的,冷机时ESR比较大,热机时ESR比较小,开关电流在ESR上形成开关电压,它会压在一个电流LN线间流动,这就是差模干扰。解决办法是用ESR低的电解电容或者在两个电解电容之间加一个差模电感。

6、测试150kHz总超标的解决方案:加大X电容看一下能不能下来,如果下来了说明是差模干扰。如果没有太大作用那么是共模干扰,或者把电源线在一个大磁环上绕几圈, 下来了说明是共模干扰。如果干扰曲线后面很好,就减小Y电容,看一下布板是否有问题,或者就在前面加磁环。

7、可以加大PFC输入部分的单绕组电感的电感量。

8PWM线路中的元件将主频调到60kHz左右。

9、用一块铜皮紧贴在变压器磁芯上。

10、共模电感的两边感量不对称,有一边匝数少一匝也可引起传导150kHz-3MHz超标。11、一般传导的产生有两个主要的点:200kHz20MHz左右,这几个点也体现了电路的性能;200kHz左右主要是漏感产生的尖刺;20MHz左右主要是电路开关的噪声。处理不好变压器会增加大量的辐射,加屏蔽都没用,辐射过不了。

12、将输入BUCk电容改为低内阻的电容。

13、对于无Y-CAP电源,绕制变压器时先绕初级,再绕辅助绕组并将辅助绕组密绕靠一边,后绕次级。

14、将共模电感上并联一个几k到几十k电阻。

15、将共模电感用铜箔屏蔽后接到大电容的地。

16、在PCB设计时应将共模电感和变压器隔开一点以免互相干扰。

17、保险套磁珠。

18、三线输入的将两根进线接地的Y电容容量从2.2nF减小到471

19、对于有两级滤波的可将后级0.22uFX电容去掉(有时前后X电容会引起震荡

20、对于π型滤波电路有一个BUCk电容躺倒放在PCB上且靠近变压器此电容对传导150kHz-2MHzL通道有干扰,改良方法是将此电容用铜泊包起来屏蔽接到地,或者用一块小的PCB将此电容与变压器和PCB隔开。或者将此电容立起来, 也可以用一个小电容代替。

21、对于π型滤波电路有一个BUCk电容躺倒放在PCB上且靠近变压器此电容对传导150kHz-2MHzL通道有干扰,改良方法是将此电容用一个1uF/400V或者说0.1uF/400V电容代替, 将另外一个电容加大。

22、将共模电感前加一个小的几百uH差模电感。

23、将开关管和散热器用一段铜箔包绕起来,并且铜箔两端短接在一起,再用一根铜线连接到地。

24、将共模电感用一块铜皮包起来再连接到地。

25、将开关管用金属套起来连接到地。

26、加大X2电容只能解决150kHz左右的频段,不能解决20MHz以上的频段,只有在电源输入加以一级镍锌铁氧体黑色磁环,电感量约50uH-1mH

27、在输入端加大X电容。

28、加大输入端共模电感。

29、将辅助绕组供电二极管反接到地。

30、将辅助绕组供电滤波电容改用瘦长型电解电容或者加大容量。

31、加大输入端滤波电容。

32150kHz-300kHz20MHz-30MHz这两处传导都不过,可在共模电路前加一个差模电路。也可以看看接地是否有问题,该接地的地方一定要加强接牢,主板上的地线一定要理顺,不同的地线之间走线一定要顺畅不要互相交错的。

33、在整流桥上并电容,当考虑共模成分时,应该邻角并电容,当考虑差模成分时,应该对角并电容。

34、加大输入端差模电感。

 

2、产品电磁兼容骚扰源有:

1设备开关电源的开关回路:骚扰源主频几十kHz到百余kHz,高次谐波可延伸到数十MHz

2设备直流电源的整流回路:工频线性电源工频整流噪声频率上限可延伸到数百kHz;开关电源高频整流噪声频率上限可延伸到数十MHz

3电动设备直流电机的电刷噪声:噪声频率上限可延伸到数百MHz

4电动设备交流电机的运行噪声:高次谐波可延伸到数十MHz

5变频调速电路的骚扰发射:开关调速回路骚扰源频率从几十kHz到几十MHz

6设备运行状态切换的开关噪声:由机械或电子开关动作产生的噪声频率上限可延伸到数百MHz

7智能控制设备的晶振及数字电路电磁骚扰:骚扰源主频几十kHz到几十MHz,高次谐波可延伸到数百MHz

8微波设备的微波泄漏:骚扰源主频数GHz

9电磁感应加热设备的电磁骚扰发射:骚扰源主频几十kHz,高次谐波可延伸到数十MHz

10电视电声接收设备的高频调谐回路的本振及其谐波:骚扰源主频数十MHz到数百MHz,高次谐波可延伸到数GHz

11信息技术设备及各类自动控制设备的数字处理电路:骚扰源主频数十MHz到数百MHz(经内部倍频主频可达数GHz),高次谐波可延伸到十几GHz